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Abstract

Soluble gas bubbles in a liquid experiencing radial oscillations created by an acoustic field are considered. It is shown that the reso-
nance frequency of large soluble gas bubbles practically coincides with the natural frequency of gas bubbles as determined by the Minna-
ert formula. In the case of small gas bubbles, the presence of capillary effects and solubility of the gas in the liquid leads to a new
resonance frequency that differs from the Minnaert frequency. A simple analytic formula is obtained that relates the resonance frequency
of a soluble gas bubble and its radius.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of oscillations of gas bubbles in a liquid is of
considerable practical interest specifically in regard to the
problem of the use of bubble screens for damping shock
waves and the use of acoustic disturbances for intensifica-
tion of technological processes.

It is of particular significance for the polishing of small
metallic manufactured wares when removing agnails from
their surface [1].

The bubbles are also widely used in bubble chambers for
the registration of tracks of charged particles. This is based
on the phenomenon that charged particles passing through
a cryogenic liquid create invisible microbubbles along their
trajectory. Under the influence of an acoustic field these
bubbles are oscillating. At the same time, their mean radii
slowly increase. Thus, they become visible after a large
number of radial pulsations [2,3].

The behavior of soluble gas bubbles in a liquid has been
examined in a number of studies (see reviews [4,5]). The
influence of gas solubility on the resonance properties of
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the soluble gas bubbles making small radial oscillations
under the influence of an acoustic field is investigated in
this paper.

Resonant properties of vapor bubbles were studied in a
number of works (see for example [6,7] where the existence
of two resonances was established on the basis of numerical
calculations). For the first time analytic formula, revealing
correlation between the second resonance frequency of a
vapor bubble and its radius was derived in [8]. Later a for-
mula of the same type was published in [9].

2. Basic equations

The problem of spherically symmetric processes around
gas–vapor bubbles has been formulated in [10–12].

We shall take the assumptions made in the Rayleigh for-
mulation for the dynamics of a single bubble [13].

Conservation of the spherical symmetry of the process;
uniformity of the pressure within the bubble (homobaric-
ity). In the course of bubble oscillations, homobaricity pre-
vails when the size of the bubble is much less than the
length of a sound wave in the gas [10,11].

At the same time it is supposed according to the equa-
tion of state that the gas density at each point corresponds
to its temperature.
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Nomenclature

R bubble radius
_R time derivative of the radius
r radial Euler coordinate
t time
T temperature
q density
p pressure
k concentration of the gas in the liquid
D diffusion coefficient
C Henry�s coefficient
w radial velocity
m kinematic viscosity
k thermal conductivity
a thermal diffusivity
B gas constant
j rate of mass transfer per unit interface surface
l viscosity

c specific heat ratio
c specific heat
Cp specific heat of the gas at constant pressure
f frequency of oscillations
x circular frequency
PA acoustic pressure amplitude
a non-dimensional displacement of bubble surface
r surface tension coefficient
S resonance function

Subscripts

l liquid
g gas
s at saturation
r on bubble surface
O at equilibrium
1 conditions at infinity
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This statement of the problem when the pressure unifor-
mity and the temperature and gas density non-uniformities
in the bubble is assumed, is valid for a wide range of bubble
sizes. It has been estimated [14] that the characteristic time
of temperature equalization in the bubble considerably
exceeds the time of pressure equalization.

Within the framework of these assumptions the diffusion
equation for the gas in the liquid in the spherical Euler
coordinates (r, t) takes the form:
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þ we
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¼ D
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o
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r2
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� �
; r > R ð2:1Þ

The boundary conditions at the surface of the bubble and
at infinity are as follows:

r ¼ RðtÞ : k ¼ ks ¼ Cp; r ¼ 1 : k ¼ kO ¼ CpO ð2:2Þ
The velocity of the bubble surface and the mass velocity of
the gas and the liquid at that surface w are related by the
expressions [10]:
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The heat equation and the equation of state of the gas take
the form:
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pðtÞ ¼ qðr; tÞBT ðr; tÞ O < r < R
ð2:4Þ

For a gas bubble without phase transitions it is legitimate
to make the simplifying assumption [14,15] Tr = TO. This
makes it possible to get by with solving only the interior
thermal problem (in the gas). This is connected with the
fact that the thermal conductivity of the liquid is much
greater than that of the gas, while the thermal diffusivity
of the liquid is much less than that of the gas [15].

Accordingly the boundary conditions for the heat Eq.
(2.4) can be written in the form:

r ¼ RðtÞ : T ¼ TO; r ¼ O :
oT
or

¼ O ð2:5Þ

The equations for the pressure and the velocity profile of
the gas in the bubble take the form [10,11]:
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The equation of radial pulsations of the bubble in an
incompressible liquid takes the form:

R€Rþ 3

2
_R
2 ¼ p � P ð1Þ � 2r=R

qe

� 4l
qeR

_R ð2:7Þ
3. Oscillations of soluble gas bubble in an acoustic field

The diffusion is very slow process and can manifest itself
at very low frequencies and for very small bubbles only.
For this reason we can simplify the system (2.1)–(2.7)
assuming that the process is isothermal.

For uniform isothermal soluble gas bubble the system of
equations will include Eqs. (2.1), (2.2) and (2.7) and the fol-
lowing equations (equations of state and conservation of
mass):

pg ¼ qgBT O ð3:1Þ
d

dt
4
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ok
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We assume the pressure amplitude of the acoustic field PA

is small by comparison with the static pressure in the liquid
P1:

P ð1Þ ¼ P1 þ PAe
ixt; PA � P1 ð3:3Þ

In this case, the radius of the bubble may be described by
the real part of the expression

R ¼ ROð1þ aeixtÞ; jaj � 1 ð3:4Þ
where a is a complex number.

Within the framework of a linear representation, ana-
lytic solution of the basic system of equations can be
obtained, similarly as done in [7] for the vapor bubble.

Let P and K be small deviations of the pressure, and gas
concentration in the liquid from the equilibrium state

p ¼ p0½1þ Peixt�; k ¼ k0½1þ KðrÞeixt� ð3:5Þ

We assume that

j ¼ �jeixt ð3:6Þ

where

p0 ¼ P1 þ 2r
R0

Let us linearize the system of basic equations taking into
account relations (3.3)–(3.6). After transformation to
non-dimensional variables the diffusion equation can be
rewritten as follows:
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Taking into account (3.5) and (3.6) we can present the dif-
fusion equation in form:

AK ¼ 1

n2
d
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0

D
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Solution of this equation has a form:

K ¼ Ks

exp½Að1� nÞ�
n

ð3:9Þ

Calculating the derivative of gas concentration at the bub-
ble surface we will obtain

dK
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The mass flux will have a form:
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From (3.7) we will receive Ks = P. So,

j ¼ �D
k0
R0

P ð�
ffiffiffi
A

p
� 1Þ ð3:12Þ

Another equations of the system of basic equations will
have a form
_Rqg þ
R
3
_qg ¼ �j ð3:13Þ
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qe
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Eqs. (3.13)–(3.15) can be transformed to the form:

_qg ¼ qg0P ixe
ixt ð3:16Þ
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3
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After substitution of (3.12)–(3.17) we will obtain the system
of two linear algebraic equations relative a and P:
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From (3.19) we will obtain
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Finally, formula for the amplitude of oscillations will have
a form:

a ¼ PA

�
p0R0ixqg0
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From (3.22) we can see that

lim
R0!0

jaj ¼ lim
R0!1

jaj ¼ 0 ð3:23Þ

From (3.23), it follows that if r 5 0, there exists at least
one bubble dimension at any finite frequency, such that
jaj attains its maximal value.

Let�s simplify formula (3.22). First, we will consider the
case of large bubbles, in which we have the following con-
dition fulfilled:

R0

3
qg0ix

����
����� Dk0

R0

ð
ffiffiffi
A

p
þ 1Þ

����
���� ð3:24Þ

Then

S ¼ qex
2R2

0 � 3p0 þ
2r
R0

� 4ixl ð3:25Þ

and resonant frequency will be close to Minnaert isother-
mal frequency
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x1 ¼
1
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qe

s
ð3:26Þ

Next, we will consider the other limiting case of sufficiently
small bubbles, in which we have the following conditions
fulfilled:
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Then, from (3.22) we will obtain

S ¼ �
R2
0ixqg0

Dk0
ffiffiffi
A

p þ 2r
R0p0

ð3:28Þ

The resonance frequency of a vapor bubble has previously
[6] been found by solving the equation Re(S) = 0.

Such an approach for determining the resonance fre-
quency is incorrect. It is clear from the fact that in addition
to the real part Re(S), the imaginary part of the resonance
function is also a function of the bubble radius and fre-
quency of the acoustic field. However, this approach does
not lead to major errors only in the region of large bubble
radii, at which the Minnaert formula holds true. The same
inaccuracy in a different article [16] led to an incorrect for-
mula that related the resonance frequency of the bubble to
its radius.

The resonance frequency should be found by solving the
equation

ojSj=ox ¼ 0 ð3:29Þ
and verifying of the condition

o
2jS=ox2 > 0 ð3:30Þ

Let�s transform the formula (3.28)
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Taking into account that k0 ¼ CP 0
, we will obtain from Eq.

(3.35)

x2 ¼
2D

R4
0

rC
qg0

 !2

ð3:36Þ
Condition (3.30) for the minimum of resonance function
(maximum of the amplitude) is satisfied.

Similarly we may obtain a formula for the resonance
dimension of soluble gas bubbles oscillating in sufficiently
low frequencies of an acoustic field.

For this purpose, we solve the equation

ojSj=oR0 ¼ 0 ð3:37Þ

Solving this equation for the function (3.34) we will obtain

2jSj ojSj
oR0

¼
2R0xq2

g0

Dk20
þ 4r2

p20
ð�2R�3

0 Þ ¼ 0 ð3:38Þ

From (3.38) we will receive

R4
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4D
x

rC
qg0

 !2

ð3:39Þ

The resulting dependence is not exactly the reverse of
(3.36), as it differs by a numerical coefficient.

Substituting (3.36) in (3.31) we may determine the reso-
nance value of the oscillations amplitude jajP1/PA

Mx ¼ jaj P1

PA

¼ P1R0ffiffiffi
2

p
r

ð3:40Þ

Let�s compare the first (3.26) and (3.36) second resonant
frequencies for an air bubble in water with R0 =
10�3 mm. The comparison shows that x1 is of order
104 kHz, but x2 is of order 1 Hz only.

There is an analogy between the bubble oscillating in the
acoustic field and the mass oscillating on the spring.
The role of the mass plays the added mass of the liquid.
The role of the spring�s stiffness plays elasticity of the gas
inside the bubble.

In the case of soluble gases their elasticity depends on
diffusion. Since diffusion is a very slow process it can man-
ifest itself at very low frequencies only. At high frequencies
the behavior of a soluble gas bubble is the same as in the
case of bubble with constant mass. In this case the Minna-
ert resonant frequency only takes place.

It should be also noted that the second resonance has a
low Q factor. Moreover, under these conditions soluble gas
bubbles can be unstable. It is possible to show that the rate
of growth of the amplitude of the bubble oscillations as a
result of instability is of the same order as the second res-
onance frequency.

Consequently, the experimental verification of the sec-
ond resonance is problematic.

4. Conclusion

It is shown that in case of small bubbles, the presence of
capillary effects and solubility of the gas in the liquid leads
to a new resonance frequency that differs from the Minna-
ert frequency. A simple analytic formula is obtained that
relates the resonance frequency of a soluble gas bubble
and its radius.
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